Electrochemical supercapacitor performance of SnO2 quantum dots
نویسندگان
چکیده
منابع مشابه
Electrochemical Performance of Carbon Nanotube Based Supercapacitor
Carbon nanotube is one of the most attractive materials for the potential applications of nanotechnology due to its excellent mechanical, thermal, electrical and optical properties. In this paper we report a supercapacitor made of nickel foil electrodes, coated with multiwall carbon nanotubes (MWCNTs) thin film using electrophoretic deposition (EPD) method. Chemical vapor deposition method was ...
متن کاملThe electrochemical applications of quantum dots.
As newly developed inorganic materials, semiconductor nanocrystals (NCs), or quantum dots (QDs), have received considerable attention because of their unique nano-related properties including high quantum yield, simultaneous excitation with multiple fluorescence colors, and electrochemical properties. This review presents a general description of the electrochemical properties of QDs with their...
متن کاملHybrid electrochemical/chemical synthesis of quantum dots.
The "electrochemical/chemical method" (or "E/C method") is a new wet chemical method for synthesizing semiconductor quantum dots on graphite surfaces. The E/C synthesis of quantum dots composed of the generic semiconducting salt, MX, typically involves three steps: (1) electrochemical deposition of nanoparticles of the metal, M degrees, from a solution of metal ions, M(n)(+); (2) electrochemica...
متن کاملElectrochemical synthesis of luminescent MoS2 quantum dots.
Size-controlled synthesis of luminescent quantum dots of MoS2 (≤2 layers) with narrow size distribution, ranging from 2.5 to 6 nm, from their bulk material using a unique electrochemical etching of bulk MoS2 is demonstrated. Excitation-dependent photoluminescence emission is observed in the MoS2 QDs. "As-synthesized" MoS2 QDs also exhibit excellent electrocatalytic activity towards hydrogen evo...
متن کاملApplications of Quantum Dots in Cell Tracking
Tracking cells after transplantation is always one the main concerns of researchers in the field of regenerative medicine. Finding a tracer with long stability and low cytotoxicity can be considered as a solution for this issue. Semiconductor nanocrystals, also called quantum dots (QDs), have unique photophysical properties which make them as suitable candidate in this setting. Broad-range exci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electrochimica Acta
سال: 2016
ISSN: 0013-4686
DOI: 10.1016/j.electacta.2016.03.153